日處理150立方米地埋式生活污水處理設備曝氣是使空氣與水強烈接觸的一種手段,其目的在于將空氣中的氧溶解于水中,或者將水中不需要的氣體和揮發性物質放逐到空氣中。換言之,它是促進氣體與液體之間物質交換的一種手段。它還有其他一些重要作用,如混合和攪拌。空氣中的氧通過曝氣傳遞到水中,氧由氣相向液相進行傳質轉移,這種傳質擴散的理論,目前應用較多的是劉易斯和惠特曼提出的雙膜理論。
產品時間:2024-09-10
日處理150立方米地埋式生活污水處理設備
買污水處理設備找魯盛水處理設備有限公司。
公司全國范圍內供應:地埋式一體化污水處理設備、氣浮機、二氧化氯發生器、加藥裝置、一體化泵站、機械格柵、UASB厭氧設備及絮凝沉淀設備等優勢產品。
日處理150立方米地埋式生活污水處理設備需要可隨時找我們詢價、要方案。
物化除磷與生物除磷技術相結合
目前普遍采用物化和生化相結合的城市污水處理工藝。其顯著的特點是流程中投加化學混凝劑,其余則與普通活性污泥法類似。生物除磷的工藝穩定性可通過附加化學沉淀來改善[26]。在國外很多二級污水處理廠的曝氣池中投入混凝劑,主要目的是幫助除磷,使原來設計具有氮磷脫除能力的污水廠的除磷功能更加有效。對一些已建成的二級生物污水處理廠,在生物處理的基礎上物化法,可大大提高出水水質。將生物除磷與化學除磷相結合,可以充分利用生物除磷費用低、化學除磷出水磷濃度低且比較穩定的優點。
采用微生物固定化技術處理含磷廢水
微生物固定化技術通常用于難降解有機廢水、含氨氮有機廢水等。,以PVA-硼酸法固定以假單胞菌為優勢菌的活性污泥進行除磷的研究中,固定化的污泥具有較高的活性及除磷效率,6h內可將起始質量濃度為87.5mg˙L-1的磷降至44mg˙L-1。對于采用微生物固定化技術除磷含磷廢水還有待研究。
反硝化除磷技術的研究動向
反硝化除磷技術以其*的高效脫氮除磷*性日益得到人們的青睞,而對反硝化除磷技術還需要更多研究。富集DPBs是反硝化除磷的關鍵,要對DPBs的種群進行研究,認識其生化特性,摸索其培養馴化方法,富集和篩選出更多的DPBs。可以利用現代分子微生物分析技術對DPBs及其吸磷有關的基因和酶進行深入的研究和探索。總之,研究開發高效生物脫氮除磷新技術是今后污水處理研究的重要課題。生物除磷機理
污水中磷的去除主要由聚磷菌等微生物來完成:在好氧條件下,聚磷菌不斷攝取并氧化分解有機物,產生的能量一部分用于磷的吸收和聚磷的合成,一部分則使ADP與H3PO4結合,轉化為ATP而儲存起來。細菌以聚磷(一種高能無機化合物)的形式在細胞中儲存磷,其能量可以超過生長所需,這一過程稱為聚磷菌磷的攝取。污水處理過程中,通過從系統中排除高磷污泥以達到去除磷的目的[3]。
在厭氧和無氮氧化物存在的條件下,聚磷菌體內的ATP進行水解,放出H3PO4和能量,形成ADP。這一過程為聚磷菌磷的釋放。
在生物除磷中,適宜的PH范圍是6~8,適溫度在5℃~30℃之間,較高的BOD5對除磷有利,BOD5/TP應大于20。
傳統的脫氮除磷工藝
幾種典型的脫氮除磷工藝:
生物除磷:A/O,A2/O、Bardenpho、UCT、Phoredox、AP等除磷工藝。
生物脫氮:A/O、A2/O、Bardnpho、UCT、Phoredox、改進的AB、TETRA深床脫氮、SBR、2000型氧化溝等脫氮工藝。
A2/O工藝
此工藝中,厭氧池進行磷的釋放和氨化,缺氧池進行反硝化脫氮,好氧池用來去除BOD、吸收磷以及硝化。A2/O工藝是較早用來脫氮除磷的方法,但是它的脫氮除磷效果難于進一步提高。工藝流程見圖1。
phoredox工藝
在此工藝中,厭氧池可以保證磷的釋放,從而保證在好氧條件下有更強的吸磷能力,提高除磷效果。由于有兩極A2/O工藝串聯組合,脫磷效果好,則回流污泥中挾帶的硝酸鹽很少,對除磷效果影響較少,但該工藝流程較復雜。UCT工藝
此工藝是對上述工藝的改進,將沉淀池污泥回流到缺氧池而不是回流到厭氧池,避免回流污泥中的硝酸鹽對除磷效果的影響,增加了缺氧池到厭氧池的混合液回流,以彌補厭氧池中污泥的流失,強化除磷效果。
上述工藝都是研究者們根據厭氧、缺氧、好氧等池子的排列數量及混合液循環和回流方式的變化開發出的一系列工藝。此外,還有通過對曝氣供氧的控制,在空間和時間上形成厭氧與缺氧環境的SBR(序批間歇式活性污泥法)工藝和氧化溝工藝。這些工藝中存在多種問題,制約了工藝的高效性和穩定性。
傳統工藝中存在的問題
微生物的混合培養
傳統的生物脫氮除磷工藝一般都采用單一污泥懸浮生長系統,在該系統中有多種差別較大的微生物,不同功能的微生物對營養物質和生長條件的要求都有很大的不同,要保證所有的微生物都達到生長條件是不可能的,這就使得系統很難達到高效運行。
泥齡問題
由于硝化菌的世代期長,為獲得良好的硝化效果,必須保證系統有較長的泥齡。而聚磷菌世代期較短,且磷的去除是通過排除剩余污泥實現的,所以為了保證良好的除磷效果,系統必須短泥齡運行。這就使得系統的運行,在脫氮和除磷的泥齡控制上存在矛盾。
碳源問題
在脫氮除磷系統中,碳源主要消耗在釋磷、反硝化和異養菌的正常代謝等方面。其中,釋磷和反硝化的反應速率與進水碳源中易降解的部分,尤其是揮發性有機脂肪酸的含量關系很大。一般說來,城市污水中所含的易降解的有機污染物是有限的,所以在生物脫氮除磷系統中,釋磷和反硝化之間存在著因碳源不足而引發的競爭性矛盾。
廢水處理的厭氧生物處理技術是在厭氧條件下,兼性厭氧和厭氧微生物群體將有機物轉化為甲烷和二氧化碳的過程,又稱為厭氧消化。厭氧生物處理技術在水處理行業中一直都受到環保工作者們的青睞,由于其具有良好的去除效果,更高的反應速率和對毒性物質更好的適應,更重要的是由于其相對好氧生物處理廢水來說不需要為氧的傳遞提供大量的能耗,使得厭氧生物處理在水處理行業中應用十分廣泛。
一般來說,廢水中復雜有機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子有機物由于其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中典型的有機物質比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,淀粉被分解成麥芽糖和葡萄糖,蛋白質被分解成短肽和氨基酸。分解后的這些小分子能夠通過細胞壁進入到細胞的體內進行下一步的分解。