20立方米/天地埋式生活污水處理設備
濰坊魯盛水處理設備有限公司生產污水處理設備、承接污水處理工程、有項目需要可直接咨詢。
我們的優勢:公司批量生產地埋式一體化污水處理設備、氣浮機、二氧化氯發生器、斜管沉淀設備、加藥裝置、玻璃鋼設備、機械格柵、疊螺污泥脫水機等,價格更優惠。
我們的服務:專車送貨到客戶使用現場、派專業技術上門安裝、免費培訓、優先使用我們的*技術成果、本地有我們專業的售后人員。
MBR工藝的特點
與許多傳統的生物水處理工藝相比, MBR 具有以下主要特點:
1.出水水質優質穩定
由于膜的高效分離作用,分離效果遠好于傳統沉淀池,處理出水極其清澈, 懸浮物和濁度接近于零,細菌和病毒被大幅去除 ,出水水質優于建設部頒發的生活雜用水水質標準( CJ25.1-89 ),可以直接作為非飲用市政雜用水進行回用。
同時,膜分離也使 微生物被*被截流在生物反應器內, 使得系統內能夠維持較高的微生物濃度,不但 提高了反應裝置對污染物的整體去除效率,保證了良好的出水水質,同時反應器 對進水負荷(水質及水量)的各種變化具有很好的適應性,耐沖擊負荷,能夠穩定獲得優質的出水水質。
2.剩余污泥產量少
該工藝可以在高容積負荷、低污泥負荷下運行,剩余污泥產量低(理論上可以實現零污泥排放),降低了污泥處理費用。
3.占地面積小,不受設置場合限制
物反應器內能維持高濃度的微生物量,處理裝置容積負荷高,占地面積大大節省; 該工藝流程簡單、結構緊湊、占地面積省,不受設置場所限制,適合于任何場合,可做成地面式、半地下式和地下式。
4.可去除氨氮及難降解有機物
由于微生物被*截流在生物反應器內,從而有利于增殖緩慢的微生物如硝化細菌的截留生長,系統硝化效率得以提高。同時,可增長一些難降解的有機物在系統中的水力停留時間,有利于難降解有機物降解效率的提高。
操作管理方便,易于實現自動控制
該工藝實現了水力停留時間( HRT )與污泥停留時間( SRT )的*分離,運行控制更加靈活穩定,是污水處理中容易實現裝備化的新技術,可實現微機自動控制,從而使操作管理更為方便。
6.易于從傳統工藝進行改造
該工藝可以作為傳統污水處理工藝的深度處理單元,在城市二級污水處理廠出水深度處理(從而實現城市污水的大量回用)等領域有著廣闊的應用前景。
7.膜-生物反應器的不足
膜-生物反應器也存在一些不足。主要表現在以下幾個方面:
1)膜造價高,使膜 - 生物反應器的基建投資高于傳統污水處理工藝;
2)膜污染容易出現,給操作管理帶來不便;
3)能耗高:首先 MBR 泥水分離過程必須保持一定的膜驅動壓力,其次是 MBR 池中 MLSS 濃度非常高,要保持足夠的傳氧速率,必須加大曝氣強度,還有為了加大膜通量、減輕膜污染,必須增大流速,沖刷膜表面,造成 MBR 的能耗要比傳統的生物處理工藝高。
序批式反應器(SBR)作為一種改良型的活性污泥處理工藝,利用時間上的推流代替空間上的推流,即以時間換空間的概念。該工藝集進水、厭氧、好氧、沉淀于一池,不但可以為實現生物脫氮除磷提供條件,還可以靈活變換運行方式以適應不同類型污水的處理要求,便于自動控制等。將SBR與MBR相結合形成的SBR-MBR工藝,除了具有一般MBR的優點外,對于膜組件本身和SBR工藝兩種程序運行都互有幫助。由于膜組件的截留過濾作用,反應中的微生物能大限度地增長,利于世代時間較長的硝化及亞硝化細菌的生長繁殖,因此,污泥的生物活性高,吸附和降解有機物的能力較強,同時也具有較好的硝化能力。此外,SBR式的工作方式為除磷菌的生長創造了條件,同時也滿足了脫氮的需要,使得單一反應器內實現同時高效去除氮磷及有機物成為可能。與傳統SBR系統相比,SBR-MBR在反應階段利用膜分離排水,可以減少傳統SBR的循環時間;同時,序批式的運行方式可以延緩膜污染。
A2O-MBR工藝
傳統的生物脫氮工藝通常采用前置反硝化或后置反硝化來實現氮的去除,而設置了厭氧、缺氧和好氧反應器的A2O工藝則可以實現同步除碳和脫氮除磷功能。由A2O工藝與膜分離技術結合而成的具有同步脫氮除磷功能的A2O-MBR工藝,可進一步拓展MBR的應用范疇。在該工藝中設置有兩段回流,一段是膜池的混合液回流至缺氧池實現反硝化脫氮,另一段是缺氧池的混合液回流至厭氧池,實現厭氧釋磷。A2O-MBR工藝中高濃度的MLSS、獨立控制的水力停留時間和污泥停留時間、回流比及污泥負荷率等都會產生與傳統A2O工藝不同的影響,具有較好的脫氮除磷效率。
3A-MBR工藝
3A-MBR是依據生物脫氮除磷機理,結合膜生物反應器技術特點而形成的具有高效脫氮除磷性能的新型污水處理工藝。其基本原理是,膜生物反應器內的高濃度硝化液和高濃度活性污泥經過回流系統形成良好的缺氧、厭氧條件,實現系統的高效脫氮除磷。該工藝的內部流程依次是第缺氧池、厭氧池、第二缺氧池、好氧池和膜池,膜池混合液分別回流至第缺氧池和第二缺氧池。第缺氧池利用進水碳源和回流硝化液進行快速反硝化,接著混合液進入厭氧池進行厭氧釋磷,減少了硝酸鹽對釋磷的影響,第二缺氧池再利用污水中剩余的碳源和回流的硝化液進一步反硝化脫氮,好氧池內同步發生有機物降解、好氧釋磷和好氧硝化等多種反應,*去除污水中的污染物,混合液再a經膜過濾出水,實現了對污水中有機物和氮磷的去除。3A-MBR工藝合理地組合了有機物降解和脫氮除磷等各處理單元,協調了各種生物降解功能的發揮,達到了同步去除各污染指標的目的,具有較高的推廣應用價值。
A2O/A-MBR工藝
A2O/A-MBR工藝是一種強化內源反硝化的新型工藝,該工藝利用MBR內高濃度活性污泥和生物多樣性來強化脫氮除磷效果,工藝流程依次為厭氧、缺氧、好氧、缺氧和膜池。該工藝在普通A2O工藝后再設一級缺氧池,在利用進水快速碳源完成生物除磷和脫氮后,再利用第二缺氧池進行內源反硝化,進一步去除TN,之后,再利用膜池的好氧曝氣作用保障出水。A2O/A-MBR工藝是針對進水碳源不足,而同時又有較高脫氮要求的污水處理項目所開發,也是強化脫氮的MBR脫氮處磷工藝。
A(2A)O-MBR工藝
A(2A)O-MBR工藝是兩段缺氧A2O工藝與MBR工藝的結合,其特點是在傳統的A2O工藝中設置了兩段缺氧區(缺氧區Ⅰ和缺氧區Ⅱ),在第缺氧區內從好氧區回流的NO3-*被還原,實現*反硝化;而在第二缺氧區內實現內源反硝化,節省外加碳源的投加。生物反硝化需要有機碳源作為電子供體,用于產能和細胞合成。生物脫氮所用碳源一般有3類:原水碳源、外加碳源和內源碳源。利用原水碳源的前置反硝化工藝一般總氮去除率不高,如果要進一步提高脫氮效率,則需要外加碳源進行反硝化。
有關研究發現污泥中含有的碳水化合物(50.2%)、蛋白質(26.7%)、脂肪(20.0%)均屬于慢速可生物降解碳源,如果將這些物質轉化為易生物降解碳源用于脫氮系統,則可大大提高污水的生物脫氮效率,同時避免了外加碳源,節約運行費用,因此具有很高的價值。A(2A)OMBR工藝生物池兩段缺氧的設計正是借鑒了這個原理。
20立方米/天地埋式生活污水處理設備厭氧生物處理是在厭氧條件下,形成了厭氧微生物所需要的營養條件和環境條件,利用這類微生物分解廢水中的有機物并產生甲烷和二氧化碳的過程。
高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
(1)水解階段水解可定義為復雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
(2)發酵(或酸化)階段發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
(3)產乙酸階段在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
(4)甲烷階段這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
酸化池中的反應是厭氧反應中的一段。
厭氧池是指沒有溶解氧,也沒有硝酸鹽的反應池。缺氧池是指沒有溶解氧但有硝酸鹽的反應池。
酸化池---水解、酸化、產乙酸,限制甲烷化,有pH值降低現象。工藝簡單,易控制操作,可去除部分COD。目的提高可生化性;
厭氧池---水解、酸化、產乙酸、甲烷化同步進行。需要調節pH,不易操作控制,去除大部分COD。目的是去除COD。
曝氣膜-生物反應器
曝氣膜-生物反應器早見于Cote.P等1988年報道,采用透氣性致密膜(如硅橡膠膜)或微孔膜(如疏水性聚合膜),以板式或中空纖維式組件,在保持氣體分壓低于泡點( Bubble Point )情況下,可實現向生物反應器的無泡曝氣。該工藝的特點是提高了接觸時間和傳氧效率,有利于曝氣工藝的控制,不受傳統曝氣中氣泡大小和停留時間的因素的影響。