A/O法一體化污水處理設備
污水設備生產銷售廠家:濰坊魯盛水處理設備有限公司。
廠家可直接專車發貨,公司有專業的安裝人員、技術人員、售后人員。
處理水量:1-1000噸每天的生活污水處理、醫療污水、洗滌污水、屠宰污水、食品加工污水、養殖污水、工業廢水及各種高低濃度的有機廢水等。
A2O生物脫氮除磷工藝污水與回流污泥混合后進入厭氧池,在兼性厭氧菌的作用下,部分易降解的大分子有機物轉化為小分子的VFA,聚磷菌吸收這些小分子物質合成PHB并儲存在細胞內,同時將細胞內的聚合磷酸鹽水解成正磷酸鹽釋放到水中,在厭氧段部分BOD被去除。厭氧池出水和從好氧池內回流的NO-x-N進入缺氧池被反硝化細菌利用污水中的有機物還原成N2去除,有機物和 NO-x-N都得到去除。混合液從缺氧池進入好氧池后主要完成有機物的進一步去除、有機氮氨化、氨氮硝化,同時聚磷菌分解體內的PHB獲取能量供自身生長繁殖,并超量吸收溶解性的正磷酸鹽以聚合磷酸鹽的形式儲存于體內,后二沉池通過排除富磷污泥使磷得到去除。
A2O工藝的運行特點
(1) 污水首先進入厭氧段,充分發揮了厭氧菌群對高濃度、較難降解有機物的降解優勢,適合混有工業廢水的城市污水處理,污泥產量少。
(2) 簡化了處理流程,增加了處理功能,是zui簡單的脫氮除磷工藝,減少了水力停留時間。
(3) 在厭氧-缺氧-好氧交替運行下,絲狀菌不會大量繁殖,SVI一般小于100,不會發生污泥膨脹。
(4) 剩余污泥中的磷含量一般可達污泥干重的6%~7% ,具有很高的肥效。
A2O工藝的運行控制
A2O脫氮除磷涉及硝化反硝化、吸磷釋磷等多個生化反應,每個反應對環境條件、基質類型、微生物組成要求不同,脫氮除磷各過程相互制約,因此了解工藝控制要素及其對脫氮除磷的影響很有必要。
泥量與泥齡
A2O工藝運行中系統污泥濃度和泥齡對脫氮除磷有重要影響,研究表明,當厭氧池、缺氧池、好氧池中的MLSS維持在3000~3800mg˙L,且三個反應器中的MLSS值接近時,系統具有較好的脫氮除磷效果。厭氧池聚磷菌和缺氧池反硝化細菌屬于短泥齡微生物,短泥齡有利于除磷和反硝化,一般缺氧池的泥齡為3~5d,好氧池中自養硝化細菌增殖速度慢,世代周期長,要使自養硝化細菌在系統中維持一定的數量,成為優勢菌群,好氧段需要20~30d的長泥齡,但同時長泥齡使含磷污泥的排放過少,且在較高的泥齡下聚磷菌為維持生命活動分解聚合磷酸鹽,可能使磷從含磷污泥里重新釋放出來,不利于系統除磷,一般系統若以除磷為主要目的,泥齡可控制在6~8d,另外,反硝化聚磷菌的發現使系統在缺氧段脫氮的同時也能使磷得到部分去除,研究發現,當系統的SRT在 15d時缺氧段具有較高的脫氮除磷效果。為了兼顧脫氮除磷,建議污泥齡為硝化菌的小世代期的2倍以上,權衡考慮將污泥齡控制在8~15d較合適。
碳源
脫氮除磷過程中反硝化細菌和聚磷菌是混合共生的,相互競爭碳源,且反硝化細菌會優先攝取碳源,厭氧段碳源不足會抑制聚磷菌的釋磷,從而導致終除磷效果變差,為了保證良好的除磷效果,厭氧段需要有充足的可供聚磷菌吸收的碳源,一般將厭氧池( SP/SBOD) 控制在0.06以內,污泥負荷控0.10kgBOD5 /( kgMLSS˙d) 以上。缺氧池內異養型兼性厭氧反硝化細菌需要足夠的有機物作為電子供體,以NO-x-N為電子受體,將回流混合液中的NO-x-N還原成 N2,完成系統的脫氮,因此缺氧池需要一定的C/N,根據工程實踐經驗,當COD/TKN大于8時,脫氮率可達80% 。
好氧池碳源不宜過多,過多的碳源會促使好氧池內異養型好氧細菌成為優勢菌群,抑制自養型硝化細菌的硝化作用,對系統脫氮產生負面影響,好氧池應將污泥負荷控制在0.15kgBOD5/( kgMLSS˙d)以下。系統運行過程中應定期核算污水進水水質是否滿足BOD5/TKN大于4,BOD5/TP大于20的要求,否則需要補充碳源。在碳源分配上,厭氧池、缺氧池、好氧池呈遞減趨勢,厭氧池需要過多的碳源,缺氧池碳源充足,好氧池碳源較低。
NH+4-N濃度
好氧段過高的NH+4-N濃度會對硝化菌產生抑制作用,要保證NH+4-N正常硝化,通常TKN/MLSS負荷率應小于0.05kgTKN/( kgMLSS˙d)
溶解氧( DO)
為了防止進入二沉池的混合液發生反硝化或釋磷,引起污泥上浮,影響出水水質和除磷效果,進入沉淀池的混合液中通常保證一定的DO濃度,且好氧池DO 不足會抑制硝化菌的生長,其對DO的低忍受極限為0.5~0.7mg˙L.
增加溶解氧有利于硝化作用的進行,好氧末端DO對A2O工藝脫氮除磷的影響,結果表明隨著末端DO的增大,系統硝化速率提高,NH+4-N的去除率從60%升高到90%以上,TN的去除率從54%升高到67% ,總磷的去除率也有所提高,好氧池的DO>2mg˙L以后,硝化速率開始減緩,繼續增大DO對硝化進程不僅沒有大幅加快,還可能使回流污泥和回流混合液中DO濃度偏高,不利于厭氧段釋磷和缺氧段反硝化,根據實踐經驗將好氧段DO控制在2mg˙L為宜,zui高不超過3mg˙L 。缺氧段DO會與硝酸鹽競爭電子供體,較高的DO還會影響硝酸鹽還原酶的合成及活性,一般缺氧段的DO不超過0.5mg˙L為宜。的厭氧環境有利于聚磷菌的釋磷,但回流污泥不可避免的帶入部分DO和NO-x-N,實際操作中厭氧段DO<0.2mg˙L即可。
小間距斜板沉淀池
蜂窩斜管填料沉淀池中水流在理論上處于層流狀態,其實不然,實際上在斜管沉淀池中水流是有脈動的,這是因為當斜管中大的礬花顆粒在沉淀中與水產生相對運動,會在礬花顆粒后面產生小渦旋,這些渦旋產生的運動造成了水流的脈動。這些脈動對于大的礬花顆粒沒有影響,對于反應不*的小顆粒的沉淀起到頂托作用,故此也就影響了出水水質。為了克服這一現象,抑制水流的脈動,小間距斜板沉淀設備應運而生。
這一設備有以下優點:
1、由于間距明顯減少,礬花沉淀距離也明顯減少,使更多小顆粒可以沉淀下來;
2、由于間距減小,水力阻力增大,使之占水流在沉淀池中水流阻力的主要部分,這樣沉淀池中流量分布均勻,與斜管相比,明顯改善了沉淀條件;
3、排泥性能遠優于其他形式的淺層沉淀池,因為這種設備基本無側向約束,設備沉淀面積與排泥面積相等。
高密度沉淀池
高密度沉淀工藝是在傳統的平流沉淀池的基礎上,充分利用了動態混凝、加速絮凝原理和淺池理論,把混凝、強化絮凝、斜管沉淀三個過程進行優化。
主要基于4個機理:*的一體化反應區設計、反應區到沉淀區較低的流速變化、沉淀區到反應區的污泥循環和采用斜管沉淀布置。反應池分為2個部分:快速混凝攪拌反應池和慢速混凝推流式反應池。快速混凝攪拌反應池是將原水引入到反應池底板的中央,在圓筒中間安裝一個葉輪,該葉輪的作用是使反應池內水流均勻混合,并為絮凝和聚合電解質的分配提供所需的動能。礬花慢速地從預沉池進入到澄清池,這樣可避免礬花破碎,并產生渦旋,使大量的懸浮固體顆粒在該區均勻沉積。
A/O法一體化污水處理設備礬花在澄清池下部匯集成污泥并濃縮。濃縮區分為兩層:上層為再循環污泥的濃縮,下層是產生大量濃縮污泥的地方。逆流式斜管沉淀區將剩余的礬花沉淀。通過固定在清水收集槽進行水力分布,斜管將提高水流均勻分配。清水由一個集水槽系統收回。絮凝物堆積在澄清池下部,形成的污泥也在這部分區域濃縮。
該沉淀池有以下幾方面的優點:
1.將混合區、絮凝區與沉淀池分離,采用矩形結構,簡化池型;
2.沉淀分離區下部設污泥濃縮區,占地少;
3.在濃縮區和混合部分之間設污泥外部循環,部分濃縮污泥由泵回流到機械混合池,與原水、混凝劑充分混合,通過機械絮凝形成高濃度混合絮凝體,然后進入沉淀區分離。
4、新型中置式高密度沉淀池
新型中置式高密度沉淀池是上海市政工程研究總院設計的新池型,該工藝過程集中了斜管沉淀池、機械攪拌澄清池和高密度沉淀池的優點,將混合、絮凝、沉淀、污泥濃縮綜合于一體。中置式高密度沉淀池設有5個過程區:混合區、絮凝反應區、分離沉淀區、濃縮排泥區和分離出水區。
新型中置式高密度沉淀池有以下優點:
1、占地小;
2、絮凝時間較短,由于污泥回流,可形成高濃度混合液,大大提高了絮凝效果,縮短了機械攪拌階段的絮凝時間;
3、布水均勻,由于采用了池中向兩側均勻布水形式,大大縮短了布水路徑,從而有效避免了布水不均影響出水水質的問題;
4、減少了加藥量;
5、沉淀池的水流流勢合理,由于進出沉淀池水流是由下而上再由下而上垂直運動,泥水分離效果更*,不宜跑礬花;
6、水廠可不設濃縮池,由于沉淀池底采用濃縮刮泥,污泥含固率高,可直接進行脫水處理;
7)結構設計簡單,布置簡潔合理。
攔截式沉淀池
攔截式沉淀池是集重力、碰撞吸附力、接觸吸附力等多種沉降作用于一體的沉淀池,提高了顆粒沉降效率。攔截式沉淀池是在池內裝有攔截體,對水中自由運動的顆粒設置障礙,顆粒運動時與攔截體在三維空間發生碰撞,這樣運動顆粒在三維空間上與固定的攔截體實現了碰撞靜止,即顆粒運動速度為零。