九一传媒在线观看_久久久久久久一区二区三区_神马电影网午夜_国产激情久久久久久熟女老人AV_无线日本视频精品_天天插天天操天天射

產品展示
PRODUCT DISPLAY
技術支持您現在的位置:首頁 > 技術支持 > 玻璃鋼一體化生活污水處理系統
玻璃鋼一體化生活污水處理系統
  • 發布日期:2019-11-13      瀏覽次數:1240
    • 玻璃鋼一體化生活污水處理系統

      生產、供應玻璃鋼一體化生活污水處理系統,支持全國內送貨上門、安裝。

      傳統生物脫氮細菌特點
      亞硝化菌
      亞硝化菌主要參與系統中氨氮被氧化為亞硝酸鹽的過程,是生化系統中氨氮去除的主要功能菌。從微生物學角度來看,亞硝化細菌是一類在好氧條件利用無機碳源合成自身菌體、利用氧化氨氮釋放能量的化能(能量來源)-好氧(溶氧要求)-自養(碳源類型)細菌。
      針對碳源類型,亞硝化菌需要利用無機碳源進行合成代謝,亞硝化細菌生長緩慢,在生化系統中所占總量較小,因此其對于外界環境影響較為敏感,低溫環境、負荷沖擊、毒物流入、污泥流失等不良條件均可能導致亞硝化菌活性下降,使得系統出現氨氮去除率低,出水氨氮偏高的現象;針對能量來源和溶氧要求,亞硝化菌通過在好氧環境下氧化氨氮獲取化學能供給自身的生長代謝,因此充足的溶解氧以及適宜的氨氮濃度是維持亞硝化菌良好生長的必需條件。此外,由于亞硝化過程會導致系統堿度下降,而亞硝化菌的適pH值范圍約為在7.0-7.5,因此應注意曝氣池pH值,避免pH值過低導致亞硝化菌活性下降,氨氮去除不佳。
      硝化菌
      硝化菌主要參與系統中亞硝酸鹽被氧化為硝酸鹽的過程,其與亞硝化細菌經常出現在相近區域,特點也較為相似。從微生物學角度來看,硝化細菌是一類在好氧條件利用無機碳源合成自身菌體、利用氧化亞硝酸鹽釋放能量的化能(能量來源)-好氧(溶氧要求)-自養(碳源類型)細菌。
      針對碳源類型,硝化菌需要利用無機碳源進行合成導致其生長緩慢,在生化系統中所占總量較小,因此其對于外界環境影響較為敏感,低溫環境、負荷沖擊、毒物流入、污泥流失等不良條件均可能導致硝化菌活性下降,使得好氧池中出現亞硝酸鹽積累的現象;針對能量來源和溶氧要求,硝化菌通過在好氧環境下氧化亞硝酸鹽獲取化學能供給自身的生長代謝,因此充足的溶解氧以及適宜的亞硝酸鹽濃度(主要來自于氨氮被氧化生成的亞硝酸鹽)是維持硝化菌良好生長的必需條件。此外,由于硝化過程會導致系統堿度下降,而硝化菌的適pH值范圍約為在7.0-8.0,因此應注意曝氣池pH值,避免pH值過低導致硝化菌活性下降。


      反硝化菌
      反硝化菌主要參與系統中硝酸鹽及亞硝酸鹽被還原的過程,是生化系統中硝酸鹽氮去除的主要功能菌。從微生物學角度來看,常規的反硝化細菌是一類在缺氧條件利用有機碳源合成自身菌體、利用氧化有機物釋放能量的化能-缺氧-異養細菌。在反硝化過程中,有機物充當電子供體,硝酸鹽充當電子受體,在電子傳遞過程中,有機物失去電子被氧化,硝酸鹽得到電子被還原,化學能被釋放用于微生物的合成及其他生命活動。
      由于反硝化菌可以利用有機碳源,其生長較快,污水處理中生化系統污泥普遍存在大量反硝化細菌,占據較大的生物量比例。因此,為了促進硝酸鹽在反硝化過程中被去除,充足的有機碳源、良好的缺氧環境是*的。有機碳源方面,進水提供的有機物的可生化性(BOD/COD比例)和含量(BOD/TN比例)多用于判斷有機物碳源是否適宜并足夠系統用于脫氮去除。溶解氧方面,由于好氧條件下氧氣會取代硝酸鹽充當細菌電子傳遞中的電子受體,導致反硝化無法順利進行,同時好氧下反硝化細菌用于反硝化的硝酸鹽還原酶及相關酶系會受到抑制,也導致反硝化無法進行。
      新型生物脫氮過程
      傳統生物脫氮理論積累多年,并在工程實踐中廣泛應用,但也存在一些不足。由于傳統脫氮中硝化與反硝化過程對于溶解氧與有機物需求不同,這導致硝化與反硝化很難在時間與空間上*同步發生在同一環境內,如何能夠減少外加碳源的投加、縮短脫氮過程流程、降低構筑物占地一直是研究熱門。
      厭氧氨氧化VS好氧氨氧化
      傳統生物脫氮中,氨氧化(即亞硝化)過程為好氧過程,細菌需要溶解氧作為電子受體實現氨氮的氧化。從1989年歐洲科學家在厭氧反應器中發現了厭氧氨氧化現象起,越來越多的厭氧氨氧化研究報告拓展了我們對于生物脫氮的認知范圍。除了污水處理,厭氧氨氧化還被發現存在于地球上的多種自然環境,其對于地球范圍內氮素循環的貢獻不容忽視。
      厭氧氨氧化細菌可以在厭氧環境下以氨氮為電子供體、以亞硝酸鹽為電子受體,產生氮氣和少量硝酸鹽。由于厭氧氨氧化菌一般呈現紅色,因此也常常被稱為“紅菌”。厭氧氨氧化菌是自養微生物,以二氧化碳等無機物為碳源進行自身生長合成。由于厭氧氨氧化無需好氧曝氣條件與有機碳源,其在曝氣能耗削減與有機碳源節約方面有著顯著優勢,因此近年來厭氧氨氧化成為發展迅猛的新型脫氮理論之一。由于需要亞硝酸鹽作為電子受體,厭氧氨氧化常與短程硝化結合,通過短程硝化將部分氨氮氧化為亞硝酸鹽,并與剩余氨氮進行厭氧氨氧化反應。
      在工藝設計中,短程硝化與厭氧氨氧化過程可在同一工段進行,也可分為兩段進行。目前厭氧氨氧化技術在國內外已有中試乃至實際規模運行案例,相比于主流厭氧氨氧化(污水處理的主線流程),污水處理廠的側流(污泥處理中的消解液)厭氧氨氧化處理發展較快,這是由于側流厭氧氨氧化過程中有機物濃度、氨氮濃度、溫度等相關因素較為理想,而主流過程中則存在較多不利于厭氧氨氧化的條件,因此主流厭氧氨氧化的擴大與推廣仍存在不少技術問題有待解決。此外,基于顆粒污泥技術的短程硝化-厭氧氨氧化技術也是研究熱門。

      一體化污水處理設備常用主體工藝
      一體化污水處理設備采用的主體工藝以A/O(厭氧-好氧活性污泥法)工藝為主。隨著污水處理要求的不斷提高與多元化需求,MBR(膜生物反應器)工藝、SBR(序批式活性污泥法)工藝也作為主體工藝運用到一體化污水處理設備中。由于采用其他工藝作為主體工藝的一體化污水處理設備效率較低或應用不廣等原因,故筆者不予以分析比較。
      A/O主體工藝
      工藝原理
      厭氧-好氧活性污泥法是由厭氧和好氧兩部分反應組成的污水生物處理工藝。污水進入厭氧池后,與回流污泥混合。活性污泥中的聚磷菌在這一過程中大量吸收污水中的BOD,并將污泥中的磷以正磷酸鹽的形式釋放到混合液中。混合液進入好氧池后,有機物被氧化分解,同時聚磷菌大量吸收混合液中的正磷酸鹽到污泥中。由于聚磷菌在好氧條件下吸收的磷多于厭氧條件下釋放的磷,因此,污水經過“厭氧-好氧”的交替作用和二沉池的污泥分離作用,終達到除磷的目的。
      工藝特點
      采用A/O工藝作為主體工藝的一體化污水處理設備具備降低有機污染物和除磷脫氮的功能,也不存在污泥膨脹問題,運行管理較簡便。由于填料的比表面積大,池內的充氧條件良好,生物接觸氧化池內單位容積的生物固體量高,再加上污泥回流,反應池內活性污泥濃度較高,因此兼有活性污泥法的特點,具有較高的容積負荷。由于生物固體量多,當有機容積負荷較高時,其F/M比可以保持在一定水平,因此,污泥產量可相當于或低于活性污泥法。該工藝操作簡單,運轉費用低,處理效果好,運行穩定,是目前較為成熟的生活污水處理工藝,能有效地確保污水達標排放。


      工藝流程說明
      生活污水經格柵進入調節池后,由污水泵抽送至*生物處理池(兼氧池),兼氧池內掛有彈性填料,通過吸附在填料上的兼氧細菌的吸附水解作用,使污水中對生物細菌有抑制作用和難以生物降解的有機物水解,大分子的有機物水解為小分子的有機物,并對固體有機物進行降解,減少了污泥量,降低污水中懸浮固體的含量,并利用污水中的有機物作為碳源,使從后級好氧段回流的硝化液中的硝酸鹽氮和亞硝酸鹽氮在兼氧脫氮菌的作用下形成氣態氮從污水中逸出,達到脫氮的目的,從而降解污水中有機污染物,提高污水的生化可降解性,并去除污水中的氨氮和懸浮物。兼氧池出水進入O級好氧接觸氧化池,好氧池內好氧微生物在水體中有充足溶解氧的情況下,利用污水中的可溶性污染物進行新陳代謝,從而達到去除污水中可溶解性污染物的目的。

      好氧池出水自流入二沉池,污水中大部分懸浮物能在此得以有效去除。二沉池出水自流入中間水池貯存,再由中間水泵提升到砂過濾器去除水中膠體、顆粒、懸浮雜質,確保出水達到排放標準后,消毒排放。經格柵處攔截的柵渣定期清理外運,二沉池中的污泥部分回流至*生物處理池,另一部分污泥至污泥池使污泥進行好氧穩定消化,減少污泥體積和臭氣排放,消化池上清液溢流回到調節池進行循環處理。剩余污泥定期抽送出設備罐體外運處置。
      MBR主體工藝
      工藝原理。
      膜生物反應器技術是活性污泥生物處理技術與膜分離技術相結合的一種新工藝。它不同于活性污泥法,不使用沉淀池進行固液分離,而是使用中空纖維膜替代沉淀池,因此具有固液分離性能。同時利用膜的特性,使活性污泥不隨出水流失,在生化池中形成8000~12000mg/L超高濃度的活性污泥濃度,使污染物分解*,因此,出水水質良好、穩定,出水細菌、懸浮物和濁度接近于零。
      工藝特點。
      MBR處理工藝對水質的適應性好,耐沖擊負荷性能好,出水水質優良、穩定,不會產生污泥膨脹;池中采用新型彈性立體填料,比表面積大,微生物易掛膜,脫膜,在同樣有機物負荷條件下,對有機物去除率高,能提高空氣中的氧在水中溶解度;工藝簡單,不必單獨設立沉淀、過濾等固液分離池,占地面積少,水力停留時間大大縮短;污泥排放量少,只有傳統工藝的30%,污泥處理費用低,但一次性投資較高。
      工藝流程說明。
      污水經格柵進人調節池后,經提升泵進入生物反應器,通過PLC控制器開啟鼓風機充氧,生物反應器出水經循環泵進入膜分離處理單元,濃水返回調節池。反沖洗泵利用清洗池中處理水對膜處理設備進行反沖洗,反沖污水返回調節池。通過生物反應池內的水位控制提升泵的啟閉。膜單元的過濾操作與反沖洗操作可自動或手動控制。當膜單元需要化學清洗操作時,關閉進水閥和污水循環閥,打開藥洗閥和藥劑循環閥,啟動藥液循環泵,進行化學清洗操作。MBR工藝是膜分離技術與活性污泥法有機結合的新型污水處理技術,它利用膜的截留作用,將生化反應池中的活性污泥和大分子有機物截留住,省掉了初沉池和二沉池,進行固液分離,有效地達到了泥水分離的目的。活性污泥濃度因此大大提高,水力停留時間和污泥停留時間可以分別控制,而難降解的大分子有機物,延長其在反應器的停留時間,使之得到大限度的分解,大大強化了生物反應器的功能。

      懸浮微生物的活性
      微生物的活性通常可用微生物的比增長率(μ)來描述,即單位質量微生物的增長繁殖速率。因此,在研究微生物活性對生物膜形成的初階段的影響時,關鍵是如何控制懸浮微生物的比增長率。研究結果表明,硝化細菌在載體表面的附著固定量及初始速率均正比于懸浮硝化細菌的活性。異養生物膜的形成時也得出同樣結果。影響懸浮微生物活性的因素主要有如下幾種。
      (1)當懸浮微生物的生物活性較高時,其分泌胞外多聚物的能力較強。這種粘性的胞外多聚物在細菌與載體之間起到了生物粘合劑的作用,使得細菌易于在載體表面附著、固定;
      (2)微生物所處的能量水平直接與它們的增長率相關。當盧增加時,懸浮微生物的動能隨之增加。這些能量有助于克服在固定化過程中微生物載體表面間的能壘,使得細菌初始積累速率與懸浮細菌活性成正比。

      (3)微生物的表面結構隨著其活性的不同而相應變化。懸浮細菌活性對細菌在載體表面的附著固定過程有影響,而且,細菌表面的化學組成、官能團的量也隨細菌活性的變化有顯著變化。細胞膜等隨懸浮細菌活性的變化而有顯著變化。細菌表面的這些變化將直接影響微生物在載體表面的附著、固定。因此,通常認為,由懸浮微生物活性變化而引起的細菌表面生理狀態或分子組成的變化是有利于細菌在載體表面附著、固定的。
      溫度
      水溫是微生物的重要生存因子,在適宜的水溫范圍內微生物可大量生長繁殖。每一種微生物都有一個zui適生長溫度,在一定溫度范圍內大多數微生物的新陳代謝活動都會隨著溫度的升高而增強,隨著溫度的下降而減弱。好氧微生物的適宜溫度范圍是10—35℃。水溫對硝化菌的生長和硝化速率有較大的影響。大多數硝化菌合適的生長溫度是25—30℃之間,當溫度低于25℃或者高于30℃硝化菌生長減慢,10℃以下硝化菌的生長及硝化作用顯著減慢。
      溫度是影響生物活性和代謝能力的關鍵因素,其對硝化反應過程的影響主要在于硝化細菌的生長規律及生物活性上。
      溫度對生物活性的影響表現為:一是對生化反應速率的影響;二是對氧的傳質速率的影響。

    聯系方式
    • 電話

    • 傳真

    在線客服
    主站蜘蛛池模板: 亚洲国产精品久久久 | 在线播放免费人成毛片乱码 | 奇米影视99| 国产自在现线2019 | 国产成人综合一区二区三区 | 国产精品国产三级国产专播下 | 久久不卡区 | 免费毛片大全 | 国产免费精彩视频 | 午夜.dj高清在线观看免费8 | 亚洲视频综合网 | 国产精品一区二区三区四区 | 欧美一区二区在线 | 精品一区二区三区影院在线午夜 | 久久国产精品免费一区二区三区 | 一区中文字幕 | 日韩在线观看 | 久久99精品久久久久久三级 | 久久久久国产精品免费免费搜索 | 一级毛片特级毛片免费的 | 在线色网 | 久久青草av | 天天操夜夜干 | 好色婷婷 | 国产精品精品久久久 | 国产老女人精品毛片久久 | 久久人妻无码毛片A片麻豆潘金莲 | 国产高清在线看免费视频观 | 久久综合九色综合97伊人麻豆 | 成人在线视频在线观看 | 青草娱乐视频 | 久婷婷| 久久精品中文 | 日韩欧美在线观看一区 | 国产一级片 | 国产91欧美 | 久久久网| 日本www黄色| 精品一区二区三区中文 | 天天看片国产 | 久草免费在线视频 |